

Workshop DevH2forEAF Dalmine, 04 April 2024

SPEAKER Ing. Fabiano Ferrari

Decarbonizing Steel industry

Participation to EU funded Project (*):

Developing and enabling H2 burner utilization to produce liquid steel in EAF

(*9The research leading to these results has received funding from the European Union's Research Fund for Coal and Steel research program under grant agreement number: 101112264

Summary

- 1) Project overview
- 2) Partners' activities
- 3) Hydrogen Vs. Methane properties
- 4) Nippon Gases participation : Fuel Supply Regulation System
- 5) FSRS project design
- 6) Current project status
- 7) Introduction to Nippon Gases
- 8) Nippon Gases Solutions for a Carbon Neutral world

Project Overview

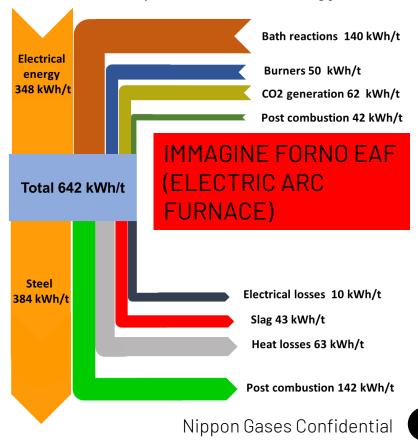
The Gas Professionals

Problem tackled by DevH2forEAF

Analyze issues related to **storage**, **transportation**, and **injection** of H2 into the EAF and provide some indication about the **influence of the hydrogen** combustion in substitution of fossil fuels in **EAF process metallurgy**

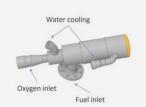
Main objectives

Design and realization of burners, able to work with NG/H2 mixture, **up to 100% hydrogen**. The burners are designed and manufactured to work in severe environment, thus ensuring mechanical and thermal resistance in respect of EAF operative conditions.


Risk analysis for the definition of the correct actions and countermeasures **when hydrogen is used in EAF process**: safety issues related to **storage**, **transport** and **injection** identified and risks minimized.

Analysis the **performance of hydrogen burner** in replacement of NG through experimental trials at two industrial sites.

Partners' Activity


The Gas Professionals

DESIGN and CONSTRUCTION

SMS @ group

Design and realization of EAF burners, able to work with NG/H2 mixture, up to 100% hydrogen

Design and realization of Fuel Supply Regulation System NG/H2 mixture, up to 100% H2

DEMO TRIAL

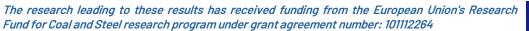
Prototype burner on 600kW pilot EAF. Trials to investigate off-gas composition H2 pickup of the melt

Pilot trials on combustion chamber. Investigation on heat transfer,

T profile in the burner, Off gas chemical composition

TEST AT INDUSTRIAL SITE

Experimental campaign on 147 t (liquid) EAF



Feasibility Study - Identification of relevant scenario and other suitable applications

Hydrogen Vs. Methane properties

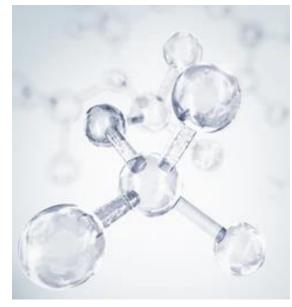
The Gas Professionals

<u>Density</u>

0,089 kg/Nm3

0,7174 kg/Nm3

<u>Auto-ignition temperature</u>


500°C

595°C

Heating value

141,8 MJ/kg

56 MJ/kg

<u>Infiammability Range</u>

4% - 75% vol 4,4% - 15% vol

Combustion reaction

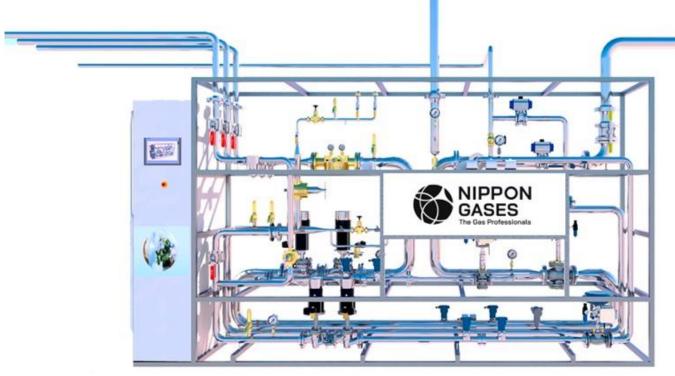
• $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$

• $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Heating value

12,75 MJ/Nm3

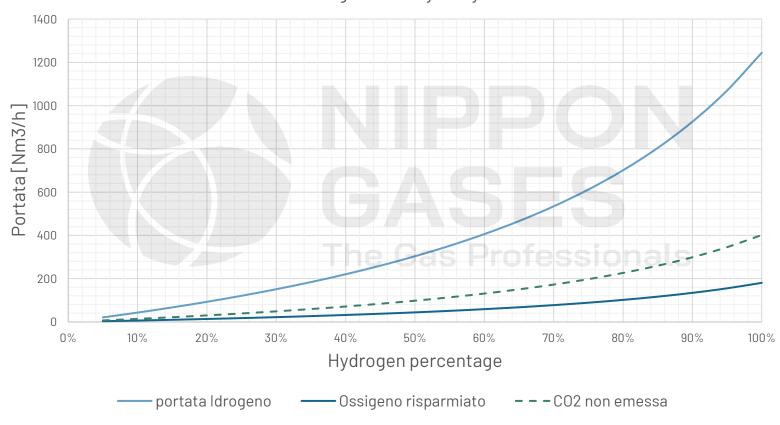
39 MJ/Nm3



Fuel Supply Regulation System FSRS critical design aspects

The Gas Professionals

- Definition and Design of proper safety integrity level based on semi-quantitative risk analysis (SIL Vs. PL).
- Unit design based on multiple variables with focus on accuracy & sensitivity.


Hydrogen flow-rate estimation

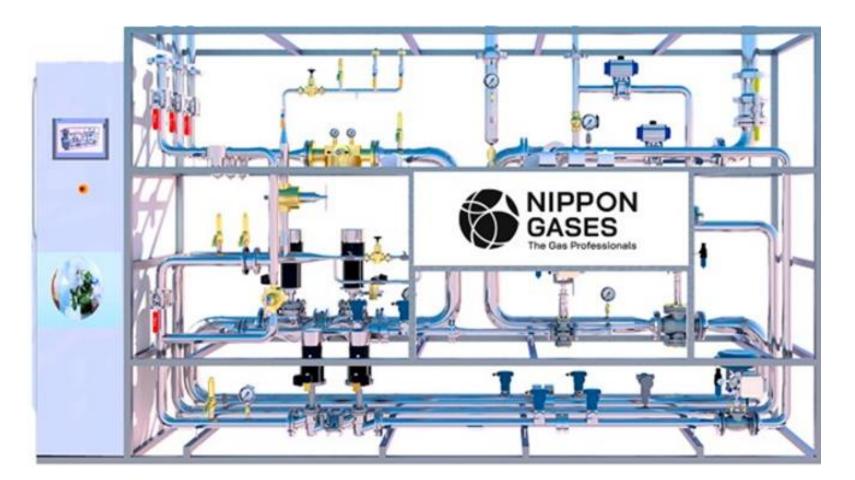
The Gas Professionals

7

FSRS project design

Blending sensitivity analysis

FSRS project design


- ✓ UNI EN 746-2:2011 Industrial thermo processing equipment –
 Part 2: Safety requirements for combustion and fuel handling systems.
- ✓ UNI EN 12067-1:2006 Gas/air ratio controls for gas burners and gas burning appliances Pneumatic types.
- ✓ EN ISO 13849-1:2023 Safety of machinery Safety-related parts of control systems Part 1: General principles for design.
- ✓ IEC 61508:2010 Functional safety of electrical/electronic/programmable electronic safety
 - related systems Parts 1 to 7.
- ✓ IEC 62061:2021 Safety of machinery Functional safety of safety-related control systems.

FSRS (Fuels Supply Regulation System)

FSRS project design

The Gas Professionals

INLET GASES:

• **H2** up to 1′400 Nm³/h

CH4 up to 400 Nm³/h

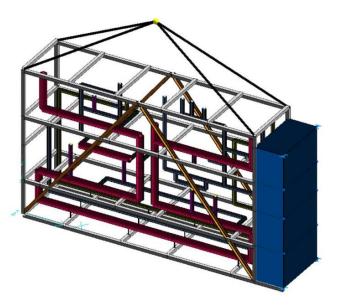
• **N2** up to 960 Nm³/h

DIMENSIONS:

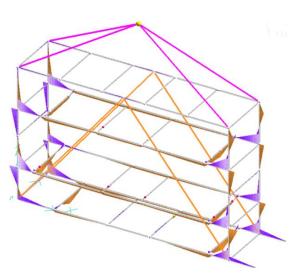
L 4,5 m

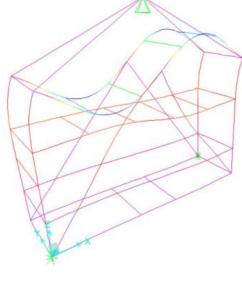
• P 1m

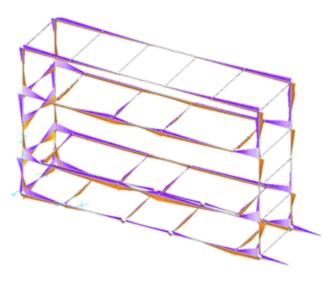
• H 2,5 m


FSRS structural and lifting analysis

FSRS project design


The Gas Professionals

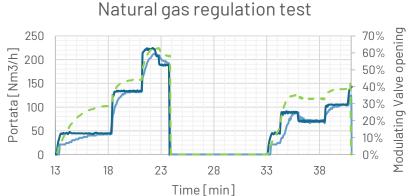

A resistance and stability check of the regulation control unit was carried out according to UNI EN 1993-1:2022 for both the lifting phase and the static phase.

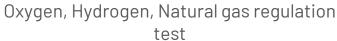

3D view of the structure during the handling phases, with bracing rods and lifting ropes.

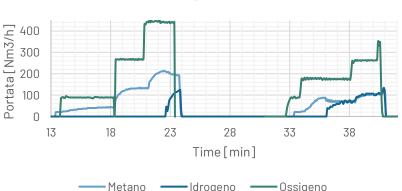
Dynamic Stress Diagrams

Buckling Analysis

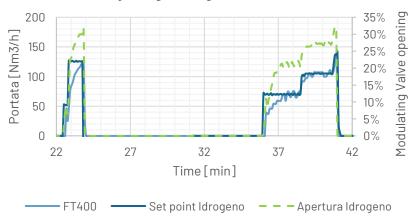
Static Stress Diagrams

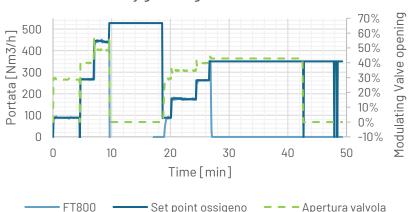





FSRS (Fuel Supply Regulation System) Control philosophy

The Gas Professionals





Set point metano

- - Apertura valvola

Oxygen regulation test

FSRS control philosophy

Project design

Hydrogen and H₂/CH₄ Mixtures handling

Functional safety logic (SIL and Performance Level)

Layers of protection analysis (LOPA) methodology risk analysis

Sensitivity of measuring systems and adjustment accuracy

3-D modelling and structural analysis of control skids

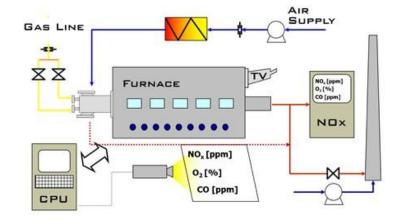
The Gas Professionals

BURNING MODE

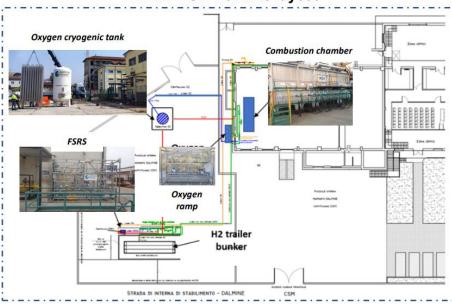
- Power set (up to 4 MW)
- Blending set (up to 100%)
- Lambda set

• Based on the parameters entered, the necessary oxygen flow rate is calculated, and the set-point is set on the 02 control unit.

• Based on the read value of the oxygen flow rate, the set point of the fuels



• During normal operation, the fuel/oxidant ratio is continuously monitored and in the event of a deviation from the theoretical stoichiometric, safety interlocks (SIL 3) are activated which will make the equipment safe.


- Prototype burner on 600kW pilot EAF in RWTH premises with pure NG (reference) as well as mixtures of H₂-CH₄ up to 100% H₂ operation. The trials will be used to investigate the off-gas composition hydrogen pickup of the melt.
- First experimental campaign at **FeNo** to be started by 2024 and **CELSA** will follow.

The Gas Professionals

RINA- CSM Dalmine layout

RINA-CSM combustion Chamber

Maximum Fuel flow rate: 300 Nm3/h of NG, 2000 Nm3/h for syngas compositions

Pollutants Monitoring and Recording: 02, C0, C02 & NOx Control System of furnace

Flow rate, Pressure and temperature monitoring and recording Continuous Video Monitoring

The Gas Professionals

Aknowledgment

This work was carried out with support from the European Union's Research Fund for Coal and Steel (RFCS) research program under the ongoing project: *Developing and enabling H2 burner utilization to produce liquid steel in EAF – DevH2forEAF –* GA number 101112264.

NIPPON

The Gas Professionals

Nippon Gases Confidential

15

NIPPON SANSO HOLDINGS

Nippon Gases is part of the Nippon Sanso Holdings Corporation - the parent company to the Taiyo Nippon Sanso industrial gas business in Japan, the US Matheson Tri-Gas Group, the European Nippon Gases, the Asia/Oceania Regional Group and Thermos Business Group- which has over 100 years of experience and boasts a major presence in Japan, Southeast Asia, Australia, the United States and Canada.

Established in 30th Oct 1910

Head office in Tokyo Japan

With more than employees 19K

Operations in countries

30

Operating over 130
Air Separation Units

NIPPON

GASES

Over **3,000** employees

Over 150,000 customers

14 Pipelines

5 Specialty Gases Laboratories

28 Air Separation Units

6 Hydrogen Plants

☐☐ 39 Small On-Site

14 CO₂ Plants

Over 600 trucks

Over **2.7** M cylinders

38 Filling Stations

11 Dry Ice Plants

9 CO₂ Terminals

3 CO₂ Ships

Carbon neutral world is the new initiative of Nippon Sanso Holdings (NSHD), oriented towards helping our customers reduce their carbon footprint.

What are we doing to achieve this change?

As part of our strategy to contribute to this change we are refocusing our gas-based solutions on five key pillars.

Greening Combustion

Hydrogen Solutions

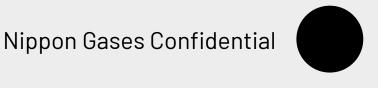
CO₂ Capture Circular Economy Digitalisation

Visit <u>carbonneutralworld.com</u> to know more!

The Gas Professionals

17

TAIYO NIPPON SANSO | MATHESON | NIPPON GASES


Thank you for the attention

fabiano.ferrari@nippongases.com

Join our journey:

Carboneutralworld.com

